
Computer Simulation of the Filling Process in Gas-
Assisted Injection Molding Based on Gas-Penetration
Modeling

Huamin Zhou, Dequn Li

State Key Laboratory of Mold & Die Technology, Huazhong University of Science and Technology, Wuhan, Hubei,
430074, People’s Republic of China

Received 22 January 2002; accepted 17 March 2003

ABSTRACT: Gas-assisted injection molding can effec-
tively produce parts free of sink marks in thick sections and
free of warpage in long plates. This article concerns the
numerical simulation of melt flow and gas penetration dur-
ing the filling stage in gas-assisted injection molding. By
taking the influence of gas penetration on the melt flow as
boundary conditions of the melt-filling region, a hybrid
finite-element/finite-difference method similar to conven-
tional-injection molding simulation was used in the gas-
assisted injection molding-filling simulation. For gas pene-

tration within the gas channel, an analytical formulation of
the gas-penetration thickness ratio was deduced based on
the matching asymptotic expansion method. Finally, an ex-
periment was employed to verify this proposed simulation
scheme and gas-penetration model, by comparing the re-
sults of the experiment with the simulation. © 2003 Wiley
Periodicals, Inc. J Appl Polym Sci 90: 2377–2384, 2003
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INTRODUCTION

Gas-assisted injection molding (GAIM) has become
one of the most important multicomponent injection-
molding processes in recent years. In gas-assisted in-
jection molding, the mold cavity is partially filled with
the polymer melt, followed by the injection of inert gas
into the core of the polymer melt. The gas cores out the
hot melt at the gap center and forces the melt to fill the
whole mold cavity completely (as shown in Fig. 1).1–4

Compared with conventional injection molding, the
required injection and packing pressure is greatly re-
duced in gas-assisted injection molding. As a result,
residual stress and warpage within the molded part
can be minimized and the part quality can be im-
proved. It can also avoid sink marks and save material
and cycle time because the thickness of the part at the
thick sections becomes thinner with the inner gas
channel. Gas-assisted injection molding has now ac-
counted for up to 10% of conventional injection mold-
ing.5 Despite the advantages associated with the gas-
assisted injection molding process, the molding win-
dow and process control become more critical and
difficult since additional processes and parameters are

involved, including the melt-filled ratio, gas pressure,
delay time of gas injection, and gas injection time. The
product, tool, and process designs for gas-assisted
injection molding are quire complicated and previous
experience with conventional injection molding is no
longer sufficient. So, computer simulation for gas-as-
sisted injection molding is imperative and is expected
to become an important and required tool to help with
both part design and process evaluation.

Four distinct regions can be identified during the
gas-assisted injection molding filling stage (as shown
in Fig. 2): the solidified melt layer close to the mold
wall, the deforming viscous melt, the penetration gas,
and the unfilled cavity. These four regions are con-
fined by the melt and gas fronts. The melt flow and
front in this process is identical to that in conventional
mold filling. The gas penetration and its interface are
responsible for transmitting the pressure required to
move the viscous melt.

For more than a decade, a simulation model based
on the Hele–Shaw flow has been being developed to
describe the polymer melt flow in thin cavities during
conventional injection molding. The typical scheme is
finite element/finite difference formulations. These
simulations provide acceptable predictions from the
engineering application point of view. Now, the exist-
ing models meet a new challenge and must be
adopted to handle both gas and melt flows in cavities
of nonuniform thickness. Although a full-scale three-
dimensional analysis may be the final solution, the
computational cost is too expensive to be imple-
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mented at the present stage for engineering design
purposes.6–8 At the present stage, adapting simulation
algorithms previously developed for conventional in-
jection molding to gas-assisted injection molding
based on the similarity of these two processes is more
feasible.9–11 In this method, the melt filling in the thin
cavity is assumed as Hele–Shaw flow, and the influ-
ence of gas penetration on the melt flow is taken only
as boundary conditions of the melt-filling region. Be-
cause numerical techniques for a filling simulation of
conventional injection molding are well established,12–15

an additional problem of a gas-assisted injection-
molding filling simulation is the solution of the gas-
penetration interface. Several attempts used only heat-
transfer arguments to set the thickness of the stagnant
material behind the advancing gas front.16,17 Yang18,19

studied the effect of the dimension of the gas channel
on gas penetration. Huzyak and Koelling20 experi-
mentally studied the isothermal gas penetration of
Newtonian melts in circular tubes. Reinelt and Saf-
man21 and Blake22 obtained numerical solutions that
are in close agreement with the data for Newtonian
melts. Poslinski et al. thoroughly experimented on gas
penetration in tubes.23

In this article, in considering the characteristics of
the filling stage of gas-assisted injection molding, thin
film approximation was employed for the polymer
melt, and the viscosity of gas and heat transfers in the
gas-penetration region were neglected. Thus, a math-
ematical model governing the behavior of melt flow
and gas penetration was established based on the
theory of viscous fluid mechanics. In this model, the
whole filling region is divided into two regions: the
melt-flow region and the gas-penetration region. Melt
flow is considered as a Hele–Shaw flow. The pressure
and temperature in the gas-penetration region are con-
sidered the same everywhere, and the influence of the
gas penetration on the melt flow is reflected on the
gas-penetration interface. Although numerous inves-
tigations have been focused on the gas penetration of
gas-assisted injection molding, there is still no reason-
able analytical model except for the experiment/expe-
rience approaches. Based on the theory of viscous
fluid mechanics, a mathematical model governing the
behavior of gas penetration was established. Then, a

thorough solution by the matching asymptotic expan-
sion method was deduced in detail. Finally, the pre-
dicted result by this presented model was compared
with experimental observation for verification.

MODEL OF THE MELT FLOW

According to the characteristics of the filling stage in a
thin part, the following assumptions are taken to sim-
plify the formulation: (a) Most injection-molded parts
have a thin cavity, and, therefore, the analysis is con-
fined to a relatively thin part such that the flow can be
considered to be two-dimensional; (b) because the
injection pressure is not very high, the melt is assumed
as incompressible; (c) the momentary equation is de-
scribed by the generalized Hele–Shaw flow, including
a quasi-steady approximation due to the thin part and
small Reynold number; and (d) heat conduction in the
streamwise direction is neglected.

Based on the assumptions above, the relevant gov-
erning equations for the continuity, momentum, and
energy balance can be described as

��bu� �

�x �
��bv� �

�y � 0 (1a)

�P
�x �

�

�z ��
�u
�z� � 0 (1b)

�P
�y �

�

�z ��
�v
�z� � 0 (1c)

�CP��T
�t � u

�T
�x � v

�T
�y� � K

�2T
�z2

� ����u
�x�

2

� ��v
�y�

2� (1d)

where x, y are the planar coordinates in the stream
plane and z is the gapwise coordinate with b denoting
the half-gap thickness, whereas u, v are the velocity
components in the x, y directions, and u� , v� , the aver-
aged whole-gap thickness. In addition, P, T, �, �, CP,

Figure 1 Schematic of gas-assisted injection-molding pro-
cess: (a) partial polymer melt filling; (b) injection of com-
pressed gas; (c) demolding after packing and cooling.

Figure 2 Schematic notation for flow regions and their
interface in gas-assisted injection molding: (1) solidified melt
layer; (2) penetration gas; (3) deforming viscous melt; (4)
unfilled cavity; (I) melt front; (II) gas front.
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and K are the pressure, temperature, viscosity, den-
sity, specific heat, and thermal conductivity of the
melt, respectively.

MODEL OF THE GAS FLOW

The velocity of the gas penetration in injection mold-
ing is lower than 70 m/s, so the gas can be assumed as
incompressible and its viscosity and thermal conduc-
tivity can be neglected with respect to the melt. There-
fore, the governing equations are

P � P�t� (2a)

T � T�t� (2b)

that is, the pressure and temperature of the gas in the
cavity is equal everywhere, only varying with the
time.

MODELING AND SOLUTION
OF GAS PENETRATION

For solving the gas penetration, the governing equa-
tions and boundary conditions at the interface are
established first. Then, all these equations are trans-
formed to be dimensionless. In the meantime, the
capillary number Ca is introduced into the dimension-
less equations. The matching asymptotic expansion
method is applied to solve these equations. Ca and
Ca2/3 are used as perturbation parameters to obtain
the inner and outer solution of the gas-penetration
interface, respectively. By matching these two solu-
tions, the gas-penetration thickness ratio is obtained.

Modeling

Due to obvious reasons, the Hele–Shaw approxima-
tion cannot be applied to the gas-penetration interface
in the gas channel. As shown in Figure 3(a), suppose
that the gas penetrates into the melt in the x direction
with the penetration thickness ratio being �. Also, n� �
nxi� � nyj� � nzk� and t� � txi� � tyj� � tzk� represent the
inner normal and tangent vectors, respectively. The
governing equations and boundary conditions in the
gas-penetration interface can be simplified as

�u
�x �

�w
�z � 0 (3a)

�
�P
�x � ���2u

�x2 �
�2u
�z2� � 0 (3b)

�
�P
�z � ���2w

�x2 �
�2w
�z2� � 0 (3c)

�u � U�nx � wnz � 0 (4a)

�u
�x txnx �

1
2 ��u

�z �
�w
�x � �txnz � tznx� �

�w
�z tznz � 0

(4b)

P � 2���u
�x nx

2 � ��u
�z �

�w
�x �nxnz �

�w
�z nz

2� � P0 �
T
R

(4c)

where U is the gas-penetration velocity in the x direc-
tion, P0, T, and R are the pressure of the gas, the melt
surface tension coefficient, and the curvature radius of
the gas-penetration interface, respectively.

Outer solution

An outer coordinate system for the gas–melt interface
is set up as shown in Figure 3(b), and the dimension-
less variables in this system are defined by

x̂ �
x � Ut

b ; ẑ �
z
b ; R̂ �

R
b ; û �

u � U
U ;

ŵ �
w
U ; P̂ �

P � P0

T/b

Based on the variables above, the dimensionless trans-
form of eqs. (3) and (4) results in

�u
�x �

�w
�z � 0 (5a)

�P
�x � Ca��2u

�x2 �
�2u
�z2� (5b)

Figure 3 Illustrations of (a) melt flow and gas penetration in the cavity, (b) the outer coordinate system, and (c) the inner
coordinate system.
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�P
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1
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�z nz
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1
R
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where Ca is the capillary number and calculated by Ca
� �U/T. For convenience, the superscripts of the vari-
ables are removed.

Suppose that the gas-penetration interface is de-
noted by z � h(x), and, hence, dz/dx � dh/dx � tz/tx

� �(nx/nz). By combining with the boundary condi-
tions, it follows that

P � �Ca�2
�u
�x �

dh
dx ��u

�z �
�w
�x�� �

d2h
dx2 �1 � �dh

dx�
2��3/2

(7)

By adopting Ca as the perturbation parameter and
considering the governing equations and the bound-
ary conditions while Ca 3 0 with the perturbation
theory, the approximation function of h in the outer
coordinate system can be obtained as

�1 �
d2h0

dx2 �1 � �dh0

dx �
2��3/2

(8)

By further inference, it results in

h0�x� � �1 � �x � 1�2 (9)

Equation (9) is the outer solution of the gas-penetra-
tion interface.

Inner solution

The point of intersection between the mold wall and
the gas-perturbation interface determined by the outer
solution is the inconsistent region of the outer solu-
tion. This point is selected as the origin to set up the
inner coordinate system [as shown in Fig. 3(c)]. In this
inner coordinate system, the variables are magnified
by � with � � Cam. To ensure that the magnified
equations are in balance and as simple as possible, m
is preferred to be 2/3 and

d� �
1 � �

�
, x� �

x � 1
�1/2 , z� �

z � 1
�

, h�

�
h � 1

�
, u� � u, w� �

w
�1/2 , P� � P (10)

By substituting eq. (10) into eqs. (5) and (6), the
resulting governing equations and boundary condi-
tions in the inner coordinate system can be written as

�u�
�x� �

�w�
�z� � 0 (11a)

�P�

�x� � �
�2u�
�x� 2 �

�2u�
�z� 2 (11b)

�P�

�z� � �2
�2w�
�x� 2 � �

�2w�
�z� 2 (11c)

w� �
dh�

dx� u� (12a)

��u�
�z� � �

�w�
�x� ��1 � ��dh�

dx��
2� � 4�

�u�
�x�

dh�

dx� � 0 (12b)

P� � �2�
�u�
�x� � ��

�u�
�z� � �2

�w�
�x� � dh�

dx� �
d2h�

dx�2 �1 � ��dh�

dx��
2��3/2

(12c)

In considering eqs. (11) and (12) while �3 0 with the
perturbation theory, the approximation function of h�
in the inner coordinate system can be obtained as

�3h� 0

�x� 3 �
�3�h�0 � d��

�h�0�3 (13)

By employing the fourth-order Runge–Kutta method
to solve the asymptotic expansion of eq. (13) results in

h� 0�x� � �
A2 	 32/3�x� � x� 0�

2

d�
� A1 	 31/3�x� � x� 0�

� A0 	 d� � O�1
x�� (14)

where A2 � �0.3215, A1 � �0.096, and A0 � �2.9.
Equation (14) is the inner solution of the gas-penetra-
tion interface.

Matching

According to the matching asymptotic expansion the-
ory, the inner solution, when x� 3��, might match the
outer solution, when x3�1. This match is satisfied in
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any coordinate system, and, here, the outer coordinate
system is selected. The inverse transformation to the
inner solution according to eq. (10) results in

h0�x� � 1 �
A2 	 32/3�x � 1�2

d�
� �1/2�2 	 A2 	 32/3x� 0

d�

� A1 	 31/3� �x � 1� � ��A2 	 32/3x� 0
2

d�
� A1 	 31/3x� 0

� A0 	 d�� � · · · (15)

While x 3 �1, the outer solution eq. (9) can be ex-
panded as

h0�x� � 1 �
1
2 �x � 1�2 � O��x � 1�4� (16)

Equations (15) and (16) must match each other. Be-
cause (x � 1)n, all of the (x � 1)n series are linear
independent of each other and the coefficients of (x
� 1)n of the two solutions should be equivalent. There-
fore, d� can be obtained as

d� � �2A2 	 32/3 � 1.3375 (17)

Consequently, the gas-penetration thickness ratio in
the steady penetration region is calculated by

� � 1 � �d� � 1 � 1.3375Ca2/3 (18)

Correction

Equation (18) is the deduced gas-penetration thickness
ratio calculating model. Yet, this calculation will lead
to a serious deviation when Ca becomes larger. The
two reasons are the following: (a) The perturbation
method has a close approximation only around the
perturbation point. The perturbation parameter Ca
was confined by Ca 3 0 and Ca2/3 3 0 in the deduc-
tion process; as a result, the deduced solution is only
suitable for small value of Ca. (b) Higher-order items
of the asymptotic expansion of the gas-penetration
interface solution were neglected, which would lower
the accuracy. To make the deduced model applicable
to a larger range of Ca, a reasonable correction is
needed.

Suppose that the correction function of gas penetra-
tion in the outer coordinate system is expressed by

h�x� � � � Dekx (19)

where D and k are constants that need to be obtained.
According to the no slippage condition at the mold
wall, the velocity and pressure can be defined by

u�x, z� � �1 � ekxf1�z� � O�e2kx� (20a)

w�x, z� � ekxf2�z� � O�e2kx� (20b)

P�x, z� � Caekxf3�z� � O�e2kx� (20c)

where f1, f2, and f3 are functions to be solved.
By applying eqs. (19) and (20) to the governing and

boundary conditions’ equations and expressing f2 as
an assembly of trigonometric functions, the simulta-
neous equations with respect to all deducible con-
stants can be obtained. Also, these constants will be
calculated by solving these equations.

At each time step during the penetration process,
the gas-penetration thickness ratio is calculated by eq.
(18) first and then corrected by eq. (19). Because the
governing and boundary conditions’ equations at each
penetration position were taken into account in the
correction, it will lead to closer approximation in a
larger range of Ca.

FILLING SIMULATION

In considering the influence of gas penetration on the
melt flow only as boundary conditions of melt-filling
region, a hybrid finite-element/finite-difference
method is used in the gas-assisted injection-molding
filling simulation. In this method, the variables in the
flow plane are described in terms of finite elements
and the gapwise and time derivatives are expressed
by terms of finite difference. The melt-flow front and
gas-penetration front are determined by the control
volume method.

The simulation process is carried out as follows:
First, the flow plane of the cavity and the gas channels

Figure 4 Shape and dimensions of the test part (mm).
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is discretized by triangular finite elements with a def-
inite thickness and one-dimensional cylinder ele-
ments, respectively, and the triangular finite elements
are meshed again with finite-difference grids in the
gapwise direction. After meshing, the control volume
of each node is calculated. By applying the flow- gov-
erning equations to the meshed nodes at the flow
plane, the equations with respect to each nodal pres-
sure are deduced. Pressure distribution can be ob-
tained by solving these pressural finite-element equa-
tions. Then, the volume flow rate, flow front advance-
ment, shear stress, shear rate, etc., are calculated
according to the pressure distribution. In the mean-
time, the energy equation is applied to all finite-ele-
ment and finite-difference nodes, and then the nodal
temperature at each layer in the gapwise direction is
calculated.

After the compressed gas-injection stage begins, the
gas pressure is taken as boundary conditions first, and
the pressure distribution is solved by iteration calcu-
lation of pressure and temperature equations. Then,
the gas-penetration velocity is calculated according to
the momentum formulation and the pressure gradient
at the gas-penetration front. With that, the capillary
number and the gas-penetration thickness ratio at that
position (i.e., the contact point of the center line of the
rib and the gas-penetration interface) are calculated by
Ca � �U/T and eqs. (18) and (19). With advancement

of the gas penetration, the melt viscosity and resis-
tance, the pressure gradient, the cavity size, etc., will
change. Thus, the gas-penetration velocity and capil-
lary number will also change. So, the calculation men-
tioned above must be repeated until the gas cannot
penetrate.

VERIFICATION

As shown in Figure 4, the experimental cavity is a
plate with three circular ribs with a diameter of 52
mm. The melt and gas-injection gates are both located
at the left of the center rib. The selected material is
ABS, namely, TFX-250 (HIGH-FLOW). A reequipped
Cheng-Shong SM-80 is selected as the molding ma-
chine. Also, the major processing conditions are a melt
temperature of 200°C, a filling time of 1.0 s, and a
pressure-control gas injection with an initial pressure
of 25 MPa and a degressive speed of 5 MPa/s. All
these conditions are held constant, only changing the
melt-filled ratio. Because the ribs are circular, the
cored-out section of the gas penetration is annular.
After demolding, the molded part is dissected and the
skin melt thickness is measured by a screw microme-
ter, having an accuracy of 	0.1 mm.

Figures 5–7 illustrate the skin melt thickness results
of three cases with different polymer melt-filled ratios
of the experiment, the simulation presented in this

Figure 5 Experimental results with melt-filled ratios of (a) 96%, (b) 92%, and (c) 88%.

Figure 6 Predications of the presented scheme with melt-filled ratios of (a) 96%, (b) 92%, and (c) 88%.

2382 ZHOU AND LI



article, and MF/GAS (the product of Moldflow—the
most famous injection-molding simulation corpora-
tion), respectively. These comparisons show that (a)
the predicted data of the presented scheme are in good
agreement with the experimental results and MF/
GAS’s predications; (b) with the polymer melt-filled
ratio decreasing, the predicted gas-penetration extent
increases, which conforms to the experiment; and (c)
the experiment and two simulations all indicate the
same phenomenon: that gas penetration at the top and
bottom ribs would catch up with and surpass that at
the middle rib with the gas-penetration extent increas-
ing. This is because the middle rib is filled before the
other two and, hence, has higher pressure at the poly-
mer-filling stage, so the compression by the gas would
be relatively less. The predicted and experimental skin
melt thickness ratios of the middle rib are plotted in
Figure 8 for comparison. It can be seen that the pre-
dicted results based on the proposed model agree well
with the experimental data, with the maximum rela-
tive deviation being 10.4%.

CONCLUSIONS

Although the filling simulation of gas-assisted injec-
tion molding has been studied by many researchers,
gas penetration is still a ticklish problem, with the lack
of a practical model based on the theory of viscous
fluid mechanics. Considering the characteristics of the
filling stage of gas-assisted injection molding, a simu-
lation approach was proposed in this article, espe-
cially the established theoretical modeling governing
the behavior of gas penetration. Also, the solution of
the model was conducted by applying the matching
asymptotic expansion method. Based on the modeling
and solution, a filling simulation system of gas-as-
sisted injection molding named HSCAE/G was devel-
oped. The comparison with the experiment and MF/
GAS showed that the presented simulation is correct.

The authors would like to acknowledge financial support
from the National Natural Science Foundation Council of
the People’s Republic of China (Grant 50205011).

Figure 7 Predications of MF/GAS with melt-filled ratios of (a) 96%, (b) 92%, and (c) 88%.

Figure 8 Comparison between experimental skin-melt thickness ratio of the middle rib and the corresponding results of
simulation.
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